(1)研究題目

※スペースが足りない場合は、枠を追加いただいて構いません。

同化箱型 CO₂ 施用実験装置を用いて換気中の温室への費用対効果の高い CO₂ 施用法の CO₂ 施用効率に基づく策定

(2)本研究の期間

(西暦) 2023年4月~ 2025年3月

(3)研究成果概要 (HP 等公開用)

キュウリやトマトなどの温室栽培では、植物の光合成を活性化させるために CO2 施用技術が広く利用されている。 特に夏秋期のように換気が盛んになる時期には、温室内の CO2 濃度を外気と同程度に維持する「ゼロ濃度差 CO2 施用法(以下、ゼロ濃度差法)」が用いられる。この方法では、施用した CO2が(見かけ上)温室外へ流出しない点 が強調され、費用対効果の面で有利であると説明されることが多い。しかし、温室内の光強度の時間変化や換気回 数に応じて CO2を施用すれば、ゼロ濃度差法よりも費用対効果の高い CO2 施用法が存在する可能性があると考え る。私はこの課題に対して、植物の純光合成速度(Pn)が高くなると予想される昼の強光時間帯のみに、外気より高 濃度の CO2を施用することで、より高い費用対効果を発揮できるのではないかと考えた。この方法を「強光時 CO2 施用法(以下、強光時法)」と呼ぶことにした。本研究では、CO2施用の費用対効果を評価するために「CO2施用効 率」を定義し、明期の CO2 施用量あたりの、無施用時と比較した明期 Pn 積算値の増加量を百分率で表した値とし た。実験は、同化箱型 CO₂ 施用実験装置を用いてキュウリを対象に行い、ゼロ濃度差法と強光時法の費用対効果 を比較した。温室の換気回数(N)を4、6、8、および10 h-1 に設定し、PPFD(光合成光量子束密度)とCO₂施用速 度および P_n との関係から明期 12 時間における各 CO_2 施用法を適用した際の P_n および S をシミュレーションした。 ここで、ゼロ濃度差法と比較を行うため、強光時法の明期における CO2 施用量は、ゼロ濃度差と同量になるように 設定した。以上の条件に基づき、明期 12 時間に対する CO_2 施用効率を推算した。その結果、 $N=4\sim8~h^{-1}$ の条件 下では、強光時法がゼロ濃度差法よりも高い CO2施用効率を示した。特に、CO2施用濃度を 500 μmol mol⁻¹に設 定し、昼間の6時間のみ施用した条件が最も効率が高く、光合成促進効果とCO2流出抑制のバランスが最適で あったと考えられる。一方、換気回数がさらに高い $(N=10^{-1})$ 条件では、温室外への CO_2 流出が多くなり、強光時 法の効果は限定的であった。これらの結果から、換気中の温室内における CO2施用では、「いつ」「どのくらい」施用 するかが重要であり、光環境および換気の条件に応じた最適なタイミングでの施用が有効であることが明らかに なった。今後は、実際の営農用温室への応用に向けた技術開発と、作物ごとの応答性に応じた施用条件の検討を 進めている。

※「助成金募集要項 10. 研究成果の報告」に基づき、「研究成果概要」は情報公開の対象となります。